3.4.58 \(\int (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2} \, dx\) [358]

Optimal. Leaf size=134 \[ -\frac {a^3 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{15 f \sqrt {a+a \sin (e+f x)}}-\frac {2 a^2 \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{15 f}-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f} \]

[Out]

-1/6*a*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2)/f-1/15*a^3*cos(f*x+e)*(c-c*sin(f*x+e))^(7/2)/f
/(a+a*sin(f*x+e))^(1/2)-2/15*a^2*cos(f*x+e)*(c-c*sin(f*x+e))^(7/2)*(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2819, 2817} \begin {gather*} -\frac {a^3 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{15 f \sqrt {a \sin (e+f x)+a}}-\frac {2 a^2 \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{15 f}-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/15*(a^3*Cos[e + f*x]*(c - c*Sin[e + f*x])^(7/2))/(f*Sqrt[a + a*Sin[e + f*x]]) - (2*a^2*Cos[e + f*x]*Sqrt[a
+ a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(7/2))/(15*f) - (a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e
 + f*x])^(7/2))/(6*f)

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2819

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[a*((2*m - 1)/(
m + n)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
 EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m
]) &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rubi steps

\begin {align*} \int (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2} \, dx &=-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}+\frac {1}{3} (2 a) \int (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac {2 a^2 \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{15 f}-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}+\frac {1}{15} \left (4 a^2\right ) \int \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac {a^3 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{15 f \sqrt {a+a \sin (e+f x)}}-\frac {2 a^2 \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{15 f}-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.86, size = 156, normalized size = 1.16 \begin {gather*} -\frac {c^3 (-1+\sin (e+f x))^3 (a (1+\sin (e+f x)))^{5/2} \sqrt {c-c \sin (e+f x)} (75 \cos (2 (e+f x))+30 \cos (4 (e+f x))+5 \cos (6 (e+f x))+600 \sin (e+f x)+100 \sin (3 (e+f x))+12 \sin (5 (e+f x)))}{960 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/960*(c^3*(-1 + Sin[e + f*x])^3*(a*(1 + Sin[e + f*x]))^(5/2)*Sqrt[c - c*Sin[e + f*x]]*(75*Cos[2*(e + f*x)] +
 30*Cos[4*(e + f*x)] + 5*Cos[6*(e + f*x)] + 600*Sin[e + f*x] + 100*Sin[3*(e + f*x)] + 12*Sin[5*(e + f*x)]))/(f
*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)

________________________________________________________________________________________

Maple [A]
time = 16.49, size = 116, normalized size = 0.87

method result size
default \(\frac {\left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {7}{2}} \sin \left (f x +e \right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}} \left (5 \left (\cos ^{6}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \left (\cos ^{4}\left (f x +e \right )\right )+6 \left (\cos ^{4}\left (f x +e \right )\right )+3 \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )+8 \left (\cos ^{2}\left (f x +e \right )\right )+11 \sin \left (f x +e \right )+11\right )}{30 f \cos \left (f x +e \right )^{7}}\) \(116\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/30/f*(-c*(sin(f*x+e)-1))^(7/2)*sin(f*x+e)*(a*(1+sin(f*x+e)))^(5/2)*(5*cos(f*x+e)^6+sin(f*x+e)*cos(f*x+e)^4+6
*cos(f*x+e)^4+3*sin(f*x+e)*cos(f*x+e)^2+8*cos(f*x+e)^2+11*sin(f*x+e)+11)/cos(f*x+e)^7

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 119, normalized size = 0.89 \begin {gather*} \frac {{\left (5 \, a^{2} c^{3} \cos \left (f x + e\right )^{6} - 5 \, a^{2} c^{3} + 2 \, {\left (3 \, a^{2} c^{3} \cos \left (f x + e\right )^{4} + 4 \, a^{2} c^{3} \cos \left (f x + e\right )^{2} + 8 \, a^{2} c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{30 \, f \cos \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

1/30*(5*a^2*c^3*cos(f*x + e)^6 - 5*a^2*c^3 + 2*(3*a^2*c^3*cos(f*x + e)^4 + 4*a^2*c^3*cos(f*x + e)^2 + 8*a^2*c^
3)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(5/2)*(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.51, size = 216, normalized size = 1.61 \begin {gather*} \frac {16 \, {\left (10 \, a^{2} c^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 36 \, a^{2} c^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 45 \, a^{2} c^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 20 \, a^{2} c^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a} \sqrt {c}}{15 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

16/15*(10*a^2*c^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^12*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*
f*x + 1/2*e)) - 36*a^2*c^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^10*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*
pi + 1/2*f*x + 1/2*e)) + 45*a^2*c^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^8*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(s
in(-1/4*pi + 1/2*f*x + 1/2*e)) - 20*a^2*c^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^6*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e
))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(a)*sqrt(c)/f

________________________________________________________________________________________

Mupad [B]
time = 9.94, size = 124, normalized size = 0.93 \begin {gather*} \frac {a^2\,c^3\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (75\,\cos \left (e+f\,x\right )+105\,\cos \left (3\,e+3\,f\,x\right )+35\,\cos \left (5\,e+5\,f\,x\right )+5\,\cos \left (7\,e+7\,f\,x\right )+700\,\sin \left (2\,e+2\,f\,x\right )+112\,\sin \left (4\,e+4\,f\,x\right )+12\,\sin \left (6\,e+6\,f\,x\right )\right )}{960\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(7/2),x)

[Out]

(a^2*c^3*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(75*cos(e + f*x) + 105*cos(3*e + 3*f*x) +
35*cos(5*e + 5*f*x) + 5*cos(7*e + 7*f*x) + 700*sin(2*e + 2*f*x) + 112*sin(4*e + 4*f*x) + 12*sin(6*e + 6*f*x)))
/(960*f*(cos(2*e + 2*f*x) + 1))

________________________________________________________________________________________